GEANT Simulation of the Small Dipole Ring – status report

Amit Klier
University of California, Riverside

Outline

- A reminder:
 - The simulation code
 - The small dipole ring
 - What has been presented at Berkeley (not much)
- New results:
 - Constant energy behavior (only magnetic field on)
 - Dynamic aperture transverse acceptance
 - Reference orbit
 - The ring with RF and "ideal" absorber (no scattering)
 - Longitudinal acceptance
 - "Perfect" cooling

Simulation software

- MUC_GEANT
 - Data-driven GEANT 3.21 (from R. Raja) similar to the one used for the RFOFO ring
 - Interface with ICOOL input/output, ECALC9
 - NEW perfect pillbox cavity (Bessel function)
 - Field maps from Steve Kahn, using shaped iron poles

6D Cooling demonstration Ring

Field map with shaped iron poles (S. Kahn)

Dynamic aperture as presented at Berkeley

Solving the x aperture mystery

- The instability was due to small fluctuations in B_x , B_z at y=0
- The solution: impose Bx=Bz=0 at y=0 (perfect symmetry)
- The ring is stable up to x=18 cm !!

Transverse acceptance of the ring

Transverse acceptance, without symmetry

 $P_x (MeV/c)$

Find the reference particle

- Orbit period ~ 3rd harmonic of 201.25 MHz
- To be consistent with other studies (H. Kirk, S. Kahn):
 - P~170 MeV/c
 - ightharpoonup R_{min}~55 cm

Reference particle

- Scale **B** down by 10% closed orbit:
- P=171.25 MeV/c
- R_{min}=56.32 cm (x=0 in virtual detectors)

Acceptance studies (pages 8, 9 above) were done with scaled-down B fields

Add RF and "ideal" absorber

- The RF cavity
 - Perfect pillbox: 25 cm long, 65 cm in radius
 - Center at R=66.32 cm (10 cm from ref. particle)
 - Active region: ±15 cm in y, ±25 cm in x centered at R=56.32 cm (10 cm off cavity center)
- The absorber
 - Gaseous H₂ at 40 Atm (room temperature) fills the whole volume
 - "Ideal" scattering and straggling not simulated

Longitudinal acceptance higher RF gradient — better

6D cooling with ideal absorber

To do

- Simulate cooling with realistic absorber
- Use beam ("standard" beam may not fit)
- Add cavity windows
- Full simulation of the demonstration ring:
 - Injection, either through dE/dx or pion decay
 - Detector planes scifi
 - •

Conclusion

- Small Dipole Ring
 - So far, no cooling simulations with GEANT
 - Dynamic aperture improved with shaped iron poles, especially in y (realistic field maps from S. Kahn)
 - The goal: simulate the 6D cooling demonstration ring with realistic features